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We examine numerically the three-way relationships among structure, Laplacian spectra, and frequency
synchronization dynamics on complex networks. We study the effects of clustering, degree distribution, and a
particular type of coupling asymmetry �input normalization�, all of which are known to have effects on the
synchronizability of oscillator networks. We find that these topological factors produce marked signatures in
the Laplacian eigenvalue distribution and in the localization properties of individual eigenvectors. Using a set
of coordinates based on the Laplacian eigenvectors as a diagnostic tool for synchronization dynamics, we find
that the process of frequency synchronization can be visualized as a series of quasi-independent transitions
involving different normal modes. Particular features of the partially synchronized state can be understood in
terms of the behavior of particular modes or groups of modes. For example, there are important partially
synchronized states in which a set of low-lying modes remain unlocked while those in the main spectral peak
are locked. We find therefore that spectra are correlated with dynamics in ways that go beyond results relating
a single threshold to a single extremal eigenvalue.
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I. INTRODUCTION

In the recent intense activity that has focused on complex
networks �1–4�, one goal has been to identify properties of
networks that are important for their function and behavior.
A number of concepts have been introduced for classifying
network structures, for example, degree distribution, path
length �5�, clustering �6�, the small-world property �6,4�,
modularity, betweenness �7�, etc. Diagnostic tools for assess-
ing function include percolation properties, robustness
against node or link deletion �8�, studies of epidemic spread-
ing �9�, and various measures of synchronizabilty. Synchro-
nization can be approached by means of global order param-
eters �10,11� or stability analyses of fully synchronized �12�
or fully incoherent �11,13� states, which give thresholds for
the onset of either synchronization or desynchronization.

One way of distilling information about a network is to
analyze the eigenvalue and eigenvector spectra of matrices
associated with the network, and that is the focus of this
paper. Such spectral properties provide an important interme-
diary between structural and dynamical properties. They are
derived directly from the network topology and many rela-
tions exist between particular eigenvalues and important net-
work structural properties �14–16�, while a number of stud-
ies have related extremal eigenvalues to dynamical
properties and thresholds �12,13�. In the current paper we use
spectral tools to diagnose the dynamics of partial synchroni-
zation, between the incoherent and fully coherent states.

The important matrices are derived from either the adja-
cency or coupling matrix. The adjacency matrix Aij is de-
fined by Aij =1 if a connection exists between the nodes num-
bered i and j and Aij =0 otherwise. The coupling matrix Wij

is simply the matrix of coupling strengths among nodes, and
if the links are all equally weighted then it is a multiple of
the adjacency matrix. Several definitions of the Laplacian
matrix are in use. We will define it here as

Lij = ��
j

Wij��ij − Wij . �1�

In the case where Wij =Aij, this matrix is sometimes known
as the “combinatorial Laplacian.” �17� The definitions and
significance of these matrices will be discussed further in the
following sections.

Some applications of network matrices depend only on
one or two extremal eigenvalues. A widely known applica-
tion of the Laplacian matrix is the master stability function
�MSF� technique for analyzing the stability of a synchro-
nized state of coupled oscillators �12�. For the MSF, the
quantity of interest is the ratio of the largest to the smallest
nonzero eigenvalue of the Laplacian, and accordingly many
studies of the Laplacian spectrum on complex networks are
limited to tabulations of this ratio. In mathematical graph
theory, a number of theorems relate geometrical properties
such as the diameter of the network to the smallest nonzero
eigenvalue �15�. Likewise with the adjacency matrix, for
some applications it is only the largest eigenvalue that mat-
ters. For example, under certain assumptions, approximate
relations were derived between the largest eigenvalue of the
adjacency matrix and the critical coupling strength for the
onset of phase synchronization in a network of limit cycle
oscillators �13�.

In many cases, however, there is additional important in-
formation contained in the full spectrum and in the eigenvec-
tors themselves. The Laplacian spectrum, for example, is rel-
evant to the solution of diffusion and flow problems on
networks �15�. Apart from the MSF formalism, it is appli-
cable more generally to the dynamics of coupled oscillators
near the synchronized state, including the relaxation of
coupled identical limit-cycle oscillators to equilibrium �18�.
In a previous paper �19�, we showed that the eigenvectors of
the Laplacian form a useful coordinate system in which to
view the dynamics of partly synchronized networks of oscil-
lators, even at a significant distance from full synchroniza-
tion.
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There have been relatively few efforts to study the full
spectrum of the Laplacian as defined in Eq. �1� for general
complex networks. In the mathematical literature, more at-
tention has often been paid to the adjacency matrix �14� or
the so-called “normalized Laplacian” �16,17� which is re-
lated to L but can have a quite different spectrum. Studies of
the combinatorial Laplacian �15� are not often focused on
applications to large complex networks. There have been
some numerical and analytical studies of the adjacency ma-
trices of complex networks �20,21,17,22� as well as some
studies of the normalized Laplacian �17� and of the closely
related “transition matrix” �22� on one category of random
uncorrelated networks with given expected degree distribu-
tions. As for the Laplacian defined in Eq. �1�, its full spec-
trum has been examined on random Erdos-Renyi �23� and
small-world networks �24� but much of the territory is still
relatively uncharted, especially in the case of networks with
degree correlations, clustering, communities, and other types
of correlations.

The current paper explores the information contained in
the Laplacian spectrum, and the three-way linkage among
network topology, spectrum, and dynamics, in particular os-
cillator synchronization dynamics. One goal is simply to
characterize the Laplacian eigenvalues and eigenvectors for
several important types of networks. We pay attention to the
spectral and dynamical effects of network topological prop-
erties such as degree distribution �especially Poisson vs
scale-free or homogeneous vs heterogeneous�, clustering
�i.e., the tendency of neighbors of a given node to form links
with each other�, and community structure, also known as
modularity. While recent studies of network matrix spectra
have dealt with random network models without correla-
tions, modularity and clustering represent significant new in-
gredients. In addition, we consider weighting and symmetry
or asymmetry of connection strengths, especially the asym-
metric connection scheme in which the total input to each
node is normalized. We are interested in the latter coupling
scheme because it is known to optimize synchronizability in
MSF terms �25,26�.

Beyond the mere classification of spectra, another goal is
to understand dynamics. For the types of networks studied,
we consider the synchronization dynamics of coupled phase
oscillators �the Kuramoto �11� model�, using coordinates
based on the Laplacian eigenbasis as a tool for visualizing
the dynamics and revealing structure within the synchroniza-
tion transition. This program follows the general inspiration
of the MSF technique in that the aim is to use the Laplacian
spectrum to isolate topological influences on synchroniza-
tion, as distinct from the individual node dynamics. The
MSF, however, is strictly applicable only to the stability
problem of a fully synchronized state of a set of exactly
identical oscillators. It is most useful for networks of identi-
cal chaotic oscillators. For appropriately limited questions,
the MSF, relying only the eigenratio, gives rigorous answers.
The present work, on the other hand, seeks rather more heu-
ristic tools for much broader questions. We consider non-
identical oscillators and we consider the process of synchro-
nization from its onset up to nearly complete
synchronization, rather than being limited to the immediate
neighborhood of the synchronization manifold. The current

paper follows a Brief Report �19� in which a subset of our
results was presented. We expand on those results here by
studying a greater variety and larger sample of networks and
by examining properties of the individual eigenvectors such
as localization and degree bias.

The remainder of the paper is organized as follows. Sec-
tion II discusses some general properties of the Laplacian
matrix that are relevant to network dynamics. Section III is
devoted to a description of particular network Laplacian ei-
genvalue spectra and their dependence on topological prop-
erties. In Sec. IV we then consider some properties of the
eigenvectors themselves, especially localization and degree
bias. Finally, in Sec. V, we examine some connections be-
tween spectra and dynamics in the case of a network version
of the Kuramoto model. A coordinate system for phase space
based on the Laplacian eigenvectors proves useful for ob-
taining a geometric picture of the oscillators’ dynamical be-
havior. Under some conditions, groups of eigenvectors be-
have as dynamically independent degrees of freedom and the
process of synchronization amounts to a contraction of phase
space onto progressively lower-dimensional submanifolds
spanned by lower-eigenvalue eigenvectors. The concluding
Sec. VI summarizes our results and suggests some future
directions.

II. PROPERTIES AND SIGNIFICANCE
OF THE LAPLACIAN

We begin by reviewing and extending some known gen-
eral properties of the Laplacian of a network of N nodes. We
denote the N-component eigenvectors and associated eigen-
values, respectively, by V� and ��, so that

�
j=1

N

LijVj
� = ��Vi

�. �2�

From the definition �1� it follows that the sum of matrix
elements in any row is zero, and consequently the constant
vector �1,1 , . . . ,1� is always an eigenvector with eigenvalue
zero. If the coupling matrix is symmetric �Wij =Wji� then so
is the Laplacian, and therefore all eigenvalues are real and
eigenvectors corresponding to different eigenvalues are or-
thogonal. The trace of L is given by

Tr L = �
i

Lii = �
j

�
i

Wij − �
i

Wii. �3�

�From now on, limits of summations are suppressed and as-
sumed to be from 1 to N unless otherwise indicated.� If self-
couplings are excluded, then the final term vanishes as Wii
=0. If, furthermore, Wij =Aij �i.e., all couplings equally
weighted� then the row sum of W is just the degree �or num-
ber of neighbors� of each node, and so

�
�

�� = Tr L = �
i

ki, �4�

where ki=� jWij is the degree of the ith node. Some authors
�e.g., �15�� define the quantity � jWij as the “degree” even
when the couplings Wij are not only zeros and ones. How-
ever, it is useful to be able to distinguish the sum of cou-
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plings from the actual number of nodes to which a given
node is connected. In cases of possible confusion, we suggest
the term “topological degree” for the latter, and following the
nomenclature of Ref. �26�, we use “intensity” to refer to the
sum of input coupling strengths. For general couplings, Eq.
�4� remains valid if the degree is replaced by the intensity.
This means that the average of the Laplacian eigenvalues is
equal to the average degree �or intensity� �k	 for the whole
network, and consequently �k	 is a convenient scaling factor
for comparing spectra of different networks �40�.

A useful identity is the following:

�
i,j

Lijxixj = �
i,j

Wij�xi − xj�2, �5�

where xi may be any quantity associated with each node �in
the context of synchronization, it could be the phase of each
oscillator�. The above guarantees that, as long as the cou-
plings are non-negative, then the Laplacian is positive
semidefinite; i.e., all of its eigenvalues are positive or zero. If
xi represents a perturbation of some dynamical degree of
freedom �such as the phase of an oscillator� then Eq. �5�
suggests a heuristic interpretation of L as a tensor expressing
the rigidity of the network against such perturbations. In par-
ticular, if the perturbation is a multiple of one of the normal-
ized eigenvectors, or in other words if

xi = �Vi
�,

then

�
i,j

Wij�xi − xj�2 = ���2. �6�

The left-hand side of Eq. �6� is a sum of squared differences
across links, weighted by the strength of each link; it can be
imagined as a sum of potential energies due to stretched
bonds. If the eigenvalue �� is small, then the perturbation
along the corresponding vector can occur without disturbing
very many strong bonds, and the opposite is true if �� is
large. With this interpretation in mind, the zero mode
�1,1 , . . . ,1� indicates the freedom of a uniform translation of
the whole network �in the case of coupled oscillators, it is the
freedom to reset all phases by an equal amount without af-
fecting any links�.

The definition �1� shows a deceptively simple relationship
between the adjacency �or coupling� matrix and the Laplac-
ian. However, it is only in the special case of a so-called
regular network �i.e., one in which the degree or the sum
K=� jWij is the same for all i� that the two matrices commute
and thus are guaranteed to share a common eigenbasis. In
this special case, the corresponding eigenvalues �� for the
Laplacian and �� for the coupling matrix are related by ��

=��−K. In general, it is easy to show that the commutator

�W,L� 
 WL − LW �7�

is a matrix whose elements are proportional to the differ-
ences between the degrees of adjacent nodes. This leads us to
expect that the differences in spectrum between the two ma-
trices become more important as the network becomes more

heterogeneous, but on the other hand can be lessened by
what is called assortative mixing �27� �i.e., a tendency of
nodes to connect with other nodes of similar degree�.

III. TOPOLOGY AND LAPLACIAN SPECTRA

In this section we examine the shapes of the Laplacian
spectra of several types of networks and consider how spe-
cific features of the spectra are correlated with structural fea-
tures of the networks. We will begin with networks in which
all existing links are bidirectional and equally weighted, and
then consider certain types of asymmetries. Except where
otherwise indicated, the networks we study have N=1000
nodes and average topological degree �k	=20. Figures 1�a�
and 1�b� show histograms of the �scaled� Laplacian eigen-
value distributions for random �Erdos-Renyi �28�� networks
with Poisson degree distribution �henceforth referred to as a
Poisson network �PN�� and Barabasi-Albert �29� networks
with scale-free distribution �a scale-free network �SFN��. The
first thing to note is the dependence of the spectrum on the
degree distribution. The eigenvalue distributions share some
statistical features of the degree distributions: for example,
the eigenvalue spectrum of the SFN has a power-law tail just
as does the degree distribution. For the Poisson networks, on
the other hand, the spectrum has a Poisson-like single peak
with no significant tail. When we varied �k	 from 5 to 40
�plots are not shown here�, we found that the relative width
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FIG. 1. �Color online� Histograms of scaled Laplacian eigenval-
ues for Poisson and scale-free networks with low and high cluster-
ing coefficients. Each histogram is cumulative for five different net-
works drawn from the same ensemble. Note that the tails have been
truncated for the scale-free networks—they extend to � / �k	�10
and are shown in Fig. 2 on a logarithmic scale.
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�or width scaled by �k	� of this peak decreases with increas-
ing �k	 but that other qualitative features are the same.

In order to study the tails of the distributions more clearly,
we plotted cumulative �integrated� eigenvalue distributions
R���
��

�p����d��, where p��� is the differential eigenvalue
density, on a log-log scale in Fig. 2. �The integrated distri-
bution is useful for numerically studying tails because it
avoids some of the problems associated with histogram bins
in the differential distribution having either no points or
small numbers of points.� The SFN shows significant finite-
size effects in both the high and low-eigenvalue cutoffs, but
there is a region of the distribution that clearly obeys a power
law �a straight line on the logarithmic plot�. For the low-
clustering SFN, the best-fit slope of the cumulative plot
within the range 0.5��i�5 is −1.73, corresponding to an
exponent for the eigenvalue distribution of −2.73. �Note that
the finite-size BA network does not give a power-law expo-
nent of exactly 3 as one expects in the large-N limit: empiri-
cally, the degree distributions for our SFNs have an exponent
of −2.76.� Note that the increase in clustering has very little
effect on the outer tail of the eigenvalue distribution, al-
though, as we will see later, it does affect properties of the
eigenvectors themselves. For comparison, we also generated
networks with scale-free distributions of expected degrees
with exponents 2.5, 3.0, and 3.5 according to the model de-
scribed in Refs. �17,30�. We found that in all cases the tails
of the eigenvalue distributions follow power laws with the
same exponents �or within 1% to 2%� as the degree distribu-
tions. The power-law dependence in the cases of the “ex-
pected degree” networks is in fact cleaner than for the BA
model, lacking the knee at large eigenvalues that is visible in
Fig. 2.

We next examine the effect of clustering, which is known
to have strong effects on the synchronizability of networks
�31�. We applied a stochastic rewiring algorithm �32,31� to

increase the clustering coefficient of the PN and SFN while
leaving the degree distributions unchanged. Clustering �also
called transitivity� refers to the tendency of two nodes which
share a common neighbor to have an increased likelihood of
also being directly connected to each other �compared to two
nodes that do not share a neighbor� �6�. Put another way,
clustering indicates the prevalence of triangles in the net-
work topology. The clustering coefficient �, a numerical
measure of clustering, is defined as an average over the net-
work of the local clustering coefficient, given by

�i =
ti

�ki

2
� =

2ti

ki�ki − 1�
, �8�

where ti is the number of mutual connections among the
neighbors of a given node, ki is the number of neighbors,
and �ki / 2 � is the number of possible pairs of neighbors that
could potentially be connected. The bottom row of plots in
Fig. 1 show the spectra of networks with the same degree
distributions as the ones above, but with high clustering
coefficients, specifically �=0.640	0.005 for the PNs and
�=0.675	0.005 for the SFNs. For the “natural” low-
clustering networks whose spectra are in the upper row of
Fig. 1, the values are within the range �=0.0195	0.0005
for the PNs and �=0.073	0.005 for the SFNs. It is apparent
that for both the PN and SFN, increasing the clustering
changes the shape of the main spectrum slightly, sharpening
the peak and shifting it to the right, while also creating a new
group of eigenvalues close to zero. A series of plots at inter-
mediate values of � �not given here� shows that as � in-
creases, this group of eigenvalues breaks away from the main
peak and gradually migrates downward toward zero.

The presence of near-zero eigenvalues generally indicates
the existence of strong communities, or nearly disconnected
components. The multiplicity of the �exactly� zero eigen-
value is equal to the number of disconnected components
�15�. Strong communities �subsets of nodes with much fewer
connections between groups than within groups� behave like
nearly disconnected components and thus result in small but
nonzero eigenvalues. Low eigenvalues and the correspond-
ing eigenvectors have been used in some algorithms for par-
titioning and/or detection of communities �33–35�. The es-
sential technique is as follows: the m eigenvectors with the
lowest nonzero eigenvalues are found, and each node is as-
signed m coordinates which are the entries of the m eigen-
vectors at the position of that node. When these coordinates
are plotted for all nodes, communities, if they exist, appear
as groups of nodes clumped together in this m-dimensional
space �34,35�. We have made such a plot for the first three
eigenvectors of the high- and low-clustering SFNs in Fig. 3.
The plot clearly shows that the nodes of the high-clustering
network group together into communities while those of the
low-clustering network do not. In examining synchronization
dynamics in Sec. V, the low-lying eigenvectors will give a
good indication of the dynamical importance of communi-
ties. In view of the interpretation of L as giving the network’s
inherent rigidity against perturbations, the low-lying eigen-
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FIG. 2. �Color online� Integrated eigenvalue distributions R���
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�P����d�� for scale-free and Poisson networks with low �dotted
line, red online� and high �solid line, blue online� clustering coeffi-
cient. The distributions for the SFNs follow a power law �straight
line on the logarithmic scale� over a broad range of eigenvalues.
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vectors associated with communities reflect the relative ease
with which the network can fall apart �or desynchronize�
along community boundaries.

Although in network studies it it most common to con-
sider networks with symmetric, undirected links, Motter et
al. �25,26� have shown for a variety of topologies that the
MSF synchronizability as measured by the eigenratio �N /�2
is improved by a particular scheme of asymmetric coupling
which we refer to here as input normalization or simply nor-
malization. This is a weighting in which the input coupling
strengths to any node are scaled so that their sum is unity.
Put another way, the coupling matrix is derived by dividing
each row of the adjacency matrix by the degree of the cor-
responding node:

Wij = Aij/ki =
Aij

� j
Aij

. �9�

In a heterogeneous network, this implies that the couplings
are not symmetric. If a hub node H with high degree is
connected to a peripheral node P with low degree, then the

influence of H on P is greater in absolute terms than that of
P on H. P’s influence on H is diluted by H’s many other
neighbors. Motivated by the enhanced synchronizability of
normalized networks, we are interested in understanding the
effect of normalization on the full Laplacian spectrum �and
subsequently on dynamics�, not only the extremal eigenval-
ues. In spite of the asymmetry introduced into the coupling
and therefore the Laplacian, it can be proved �25� that the
Laplacian eigenvalues are still all real in this case. Further-
more, the intensities of all nodes are unity, so that, as dis-
cussed above, the Laplacian has a common eigenbasis with
the coupling matrix. �Due to the asymmetry, however, the
eigenvectors are not mutually orthogonal.� The eigenvalue
spectrum is in fact the same as for what is known in graph
theory as the “normalized Laplacian,” �16,17� of the under-
lying unweighted network, although the eigenvectors them-
selves are not the same. To summarize the relationships
among the matrices, let D be the diagonal matrix whose en-
tries are the topological degrees, let Lu and Ln be the Lapla-
cians of the unnormalized and normalized networks, repec-
tively, while L is the symmetric “normalized Laplacian.”
Then the relationships are

Lu = D − A ,

Ln = LuD−1,

L = D−1/2LuD−1/2. �10�

Figure 4 shows eigenvalue histograms for the same net-
works as in Fig. 1, but with the inputs normalized. The first
striking feature is that the spectra look very nearly the same
for both the PN and the SFN. As was found in �26�, the effect
of degree heterogeneity is greatly suppressed by normaliza-
tion; we will see that this is also true of the effect of degree
distribution on dynamics. In the low clustering case, the
spectra have approximately semicircular shapes for both net-
works, recalling the so-called semicircle law �36,37� for
spectra of random matrices. Previously, the normalized
Laplacians of a broad class of uncorrelated random matrices
�including the Erdos-Renyi but not, strictly speaking, the
Barabasi-Albert network� were found to obey the semicircle
law �17�, as were the closely related transition matrices �22�.
Consistent with what is known about the eigenratio �25�, the
spectra are much narrower than for the unnormalized net-
works, with no apparent tail either of the exponential or
power-law type.

Increasing the clustering of the normalized networks nar-
rows and markedly sharpens the main spectral peak into a
more triangular shape. The other main effect of clustering,
namely the creation of a second peak near zero, is much the
same as in the unnormalized networks. This is consistent
with our understanding of the low modes as being associated
with community structure. Communities are a topological
phenomenon, the result of a paucity of connections among
the different subsets. If there are only a few connections
between two subsets of the network, then an adjustment of
coupling strengths alone is unlikely to compensate signifi-
cantly for this scarcity, unless some bias results in extra
strengthening of intercommunity ties at the expense of oth-
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ers. Input normalization certainly alters the dynamical roles
of high- vs low-degree nodes, but it is not surprising that it
has little effect on such global topological features as com-
munity formation.

IV. SHAPES OF THE EIGENVECTORS: LOCALIZATION
AND DELOCALIZATION

To the extent that different Laplacian eigenvectors are as-
sociated with collective degrees of freedom having different
dynamical functions, it is interesting to examine the “shapes”
of these vectors and understand how they relate to the net-
work’s structure. In Fig. 5, we plot the components Vi

� of
several representative eigenvectors against the node index i
where the nodes have been sorted from lowest to highest
degree. While all plots appear partly random, reflecting the
randomness in the network’s structure, there are nonetheless
patterns that are clear from a visual inspection, and clear
qualitative differences between different vectors. Some vec-
tors, such as the one shown in Fig. 5�b�, are highly localized,
with only a few large nonzero components and the rest
nearly zero, while others such as the one in Fig. 5�a� have
nonzero components spread throughout the whole network.
Some, such as Fig. 5�c� or 5�d�, show a degree bias; most of
their large components occur at nodes within a certain degree
range �either high, low, or intermediate�. The vector in Fig.

5�e� is an example of one of the low-lying modes in a
strongly clustered network. The components cluster around a
small number of discrete values. Nodes having the same
value of Vi are likely to belong to the same community. �As
described above, the communities are separated more dis-
tinctly if several low-lying eigenvectors are plotted simulta-
neously.�

A convenient scalar measure of a vector’s degree of local-
ization is the so-called inverse participation ratio �11� �IPR�
P, which is defined for any vector V by
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to the scaled values � / �k	 in Figs. 1, 6, and 7.
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FIG. 5. �Color online� Examples of different shapes of Laplac-
ian eigenvectors. Each is typical for one type of network and a
particular range of eigenvalues. x coordinates are the node index,
where the nodes have been sorted from lowest to highest degree; y
coordinates are the eigenvector components. �a� Low-clustering PN,
vector �=500 �i.e., the vector with the 500th lowest eigenvalue�,
�=19.27. This vector is delocalized and its components appear ran-
dom. �b� Low-clustering PN, �=4, �=7.97. This vector is strongly
localized: note the single large component at i�810. �c� Low-
clustering SFN, �=800, �=23.74. Not strongly localized, but most
large components occur at nodes within a medium to high range of
degrees. �d� Low-clustering SFN, �=50, �=8.26. Largest compo-
nents occur at low-degree nodes. �e� High-clustering PN, �=4, �
=0.86. This is an example of the low-lying modes that form in
networks with high clustering. Components fall near a small num-
ber of discrete values, giving the plot a striated appearance.
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P�V� =
�i

Vi
4

��i
Vi

2�2 . �11�

�Note that the denominator is 1 if the vector is normalized.�
P ranges from a minimum value of 1 /N �for a normalized
vector whose components are all of equal magnitude 1 /N�
to a maximum of 1 for a vector with only one nonzero com-
ponent. The more localized the vector �i.e., the less evenly its
weight is spread among multiple components� the higher the
value of P. In order to quantify the degree bias noted for
some of the eigenvectors, let us define the degree expectation
value �DEV� Q for a vector as

Q�V� =
�i

Vi
2ki

�i
Vi

2
. �12�

�Some other authors �23� have used instead the “center con-
nectivity,” which is simply the degree of the node with the
maximum value of �Vi�. The center connectivity should be
nearly identical to the DEV in cases of vectors localized very
strongly at a single node, but Q, being an average, is likely to
be a more robust and meaningful metric in cases such as Fig.
5�c� where a vector has some level of localization and degree
bias but no single component is dominant.�

Figures 6–9 show values of P and Q / �k	 �i.e., the DEV
scaled by the average degree� for the Laplacian eigenvectors
of several networks, plotted against the corresponding scaled
eigenvalues � / �K	. �Note that while Q is appropriately
scaled by the average topological degree, the eigenvalues are
scaled by the average intensity, which is equal to the topo-
logical degree for the unnormalized networks but unity for
the normalized ones.� In the plots for the unnormalized net-
works �Figs. 6 and 7�, several features are notable. Among
modes within the main spectral peak, those near the edges
tend to be more strongly localized. For both Poisson and
scale-free networks, increased clustering tends to increase
the localization of modes, especially in the tails of the eigen-
value distributions. The DEVs are positively correlated with
the eigenvalues, especially in the scale-free case and for the
tails of the eigenvalue distributions. An exception to these
trends is the group of low-lying modes that form at high
clustering. These modes are generally rather delocalized and
have Q close to the average degree of the network. This is
consistent with their interpretation as reflecting global com-
munity divisions of the network, involving most of the
nodes. We note that our results for the spectra, IPRs, and
DEVs for the low clustering Poisson networks agree with
random network results reported elsewhere �23�. The other
results are largely consistent with the general principle that
localization tends to occur near “defects” or nodes with de-
grees significantly higher or lower than average �23�. A no-
table exception occurs for the strongly clustered SFN, where
there is a large group of moderately to strongly localized
modes with scaled eigenvalues near unity �see Fig. 6�. From
Fig. 7 it is evident that the DEVs of these modes fall near the
average of the degree distribution, not the tails.

Analogous plots of eigenvector properties for normalized
networks �Figs. 8 and 9� show radical differences from the
unnormalized case. First, there is much less localization of
modes, even at high clustering. The dependence of DEV on
eigenvalue is much weaker and not monotonic. Rather, the
main peak of the spectrum is approximately symmetric about
�=1. In the normalized network unlike the unnormalized
case, the Laplacian spectrum is directly related to that of the
coupling matrix, and a Laplacian eigenvalue of 1 corre-
sponds to a coupling matrix eigenvalue of 0. It is a general
property of random graphs that their adjacency matrix spec-
tra are approximately symmetric about zero �deviations from
symmetry occur when there are correlations or clustering�
�20�. The spectra of normalized networks evidently share this
approximate symmetry, although the coupling matrix in this
case is not the same as the adjacency matrix. It should be
kept in mind that the eigenvectors of L for a normalized
network are not orthonormal. In contrast to the main peak,
the low-lying modes of strongly clustered networks behave
qualitatively much like those in unnormalized networks, sug-
gesting again that community structure is scarcely affected
by normalization.

Without making a thorough analysis of the dependence of
spectra on �k	 or the finite size N, we confirmed that plots of
the eigenvalue distributions, IPRs, and DEVs �not shown
here� for scale-free and Poisson networks with N=1500 and
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�k	=10 show very much the same features as in the N
=1000, �k	=20 case, including the same changes with in-
creased clustering coefficient, provided that the eigenvalues
are always scaled correspondingly by �k	. One difference is
that the relative width of the Poisson distribution decreases
with increasing �k	.

V. SPECTRA, EIGENCOORDINATES, AND DYNAMICS

In this section, we examine numerically the synchroni-
zation behavior of a network Kuramoto �11� model on
the networks we have been studying. Topological fea-
tures �degree distribution, clustering, normalization� have
strong and sometimes complex effects on synchronization
�31,25,26,12�. We show that projections onto the Laplacian
eigenbasis are useful in understanding these effects, and that
specific dynamical behaviors of the networks are associated
with specific sets of modes in the Laplacian spectrum. This is
true even in strongly nonlinear regimes of partial synchroni-
zation, despite the fact that the Laplacian is most naturally
applied to linear problems near full synchronization.

We first define the model and show how the Laplacian
and its spectrum appear naturally in a linearized description
of the frequency-synchronized state, and then we proceed to
use the Laplacian eigenvectors to parametrize the partially
desynchronized states, showing that this coordinate system
remains useful well beyond the range of validity of the lin-

earization and that individual modes may behave as quasi-
independent degreess of freedom.

Our model �38� is defined by the coupled equations

d
i

dt
= �i +

�

�K	�j

Wij sin�
i − 
 j� , �13�

where 
i are N phase variables �one associated with each
node of a network�, −1�i1 are the randomly and uni-
formly distributed intrinsic frequencies, � is the overall cou-
pling strength, and Wij as before is the weighting matrix of
the individual couplings. The coupling strength is scaled by
the average intensity �K	 of all nodes. In our simulations, we
imposed the condition �̄=0 by subtracting the average from
each realization of the random frequencies. �This condition
can be imposed without loss of generality; it amounts to a
transformation to a rotating frame of reference.� If the cou-
plings are symmetric, then the velocities

d
i

dt obey the exact
sum rule

�
i

d
i

dt
= �

i

�i = 0 �14�

due to the antisymmetry of the sine coupling function: when
summed over i, the coupling terms in Eq. �13� cancel. Note
that Eq. �14� does not necessarily hold for a normalized net-
work, due to the asymmetry of the coupling Wij.

If the system is strongly synchronized so that all phase
differences are small, then the sine function can be linearized
and the equations of motion become approximately
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d
i

dt
= �i +

�

�K	�j

Wij�
i − 
 j� = �i −
�

�K	�j

£ij
 j .

�15�

Thus the Laplacian matrix appears naturally in the descrip-
tion of small deviations from full synchronization.

We simulated the model �13� using a fourth-order Runge-
Kutta method with time step 0.1. In Fig. 10 we show the
global synchronization order parameter

r = ���
j

ei
j��
T

�16�

�where � 	T signifies a time average� as a function of the
coupling strength � for all of the network types considered in
the previous sections. In the simulations, the time average
was approximated by sampling 30 times at intervals of ten

time units, after first running for 200 time units in order to
reach a steady state. The results were then averaged over ten
realizations of the random frequency distribution for each of
five networks drawn from the ensemble. Note that in all
cases, increasing the clustering strongly suppresses full syn-
chronization, as shown by the fact that the order parameter
curves for the highly clustered networks approach unity
much more slowly at large coupling strength. This effect is
more pronounced for the SFN than for the PN, whether nor-
malized or not. For the unnormalized SFN, however, in-
creased clustering has the seemingly contradictory effect of
promoting the onset of partial synchronization even though it
inhibits full synchronization. This effect, noted previously in
�31� and confirmed by finite size scaling analysis �39� is
apparent in the early upward turn in the order parameter
curve at ��0.5. It was found previously that it is the
highest-degree nodes which synchronize first. This advanced
partial synchronization disappears, however, in the case of
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normalized inputs. Since the advanced synchronization is as-
sociated with a special behavior of the high-degree nodes, its
disappearance is consistent with the general observation that
input normalization greatly reduces the effects of degree het-
erogeneity.

In �31� it was shown that nodes in different parts of the
degree distribution can play different dynamical roles: for
example, in the case of the SFN it is the hubs �high-degree
nodes� that synchronize first. A complementary way of view-
ing the synchronization dynamics is to examine it in terms of
appropriately chosen collective degrees of freedom rather
than the behavior of individual oscillators. Here as in �19�,
we define collective coordinates by means of projections
onto eigenvectors of the Laplacian. We define projections of
the phase and frequency vectors onto these eigenvectors by


� 
 �
i


iVi
�, �� 
 �

i

�iVi
�. �17�

The normal coordinates 
� are the appropriate ones for de-
scribing the relaxation to equilibrium of a strongly synchro-
nized system �31,18�. In addition, we define the observed
frequencies �rotation numbers� of the oscillators as the time
averages

� j = � d� j

dt
�

T
. �18�

Projecting the vector of observed frequencies onto the La-
placian eigenbasis gives a time-averaged velocity along the
direction defined by each eigenvector:

�� = �
j

� jVj
�. �19�

For the purpose of elucidating the network dynamics, we
found these normal velocities more useful to work with than
the normal coordinates themselves for two reasons. First,
from a computational point of view, it is easier to construct
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time averages of the velocities as one requires only initial
and final phases �not modulo 2� for this purpose� together
with the elapsed time. Second, we found that plots of the
velocities as functions of coupling strength displayed sharper
transitions and clearer patterns than averages �or mean
squares� of coordinates.

Figure 11 shows plots of the mean square velocities
�����2	 as functions of coupling strength � for four different
values of � taken from different parts of the spectrum for a
highly clsutered Poisson network. The time averages ��

were taken over an interval of 300 time units and the squares
were averaged over 100 realizations of the random frequen-
cies. The different �����2	 values fall to zero at different
rates, so that the eigendirections associated with high eigen-
values become locked �i.e., the corresponding velocities be-
come zero� at lower values of � than the ones associated
with low eigenvalues. Similar trends were noted for SFNs in
�19�. The normal velocites give more detailed information
about synchronization than a global order parameter. The
evolution with increasing � from complete incoherence to
complete frequency synchronization can be visualized as a
series of quasi-independent locking transitions in which dif-

ferent normal modes effectively drop out of the active dy-
namics. As eigendirections successively lock, the phase
space of the oscillator system can be viewed as contracting
onto progressively lower-dimensional subspaces spanned by
the remaining eigenvectors. Modes with very low eigenval-
ues are very difficult to lock, and therefore their presence
will inhibit complete synchronization. Evidently these low
modes are correlated with the difficulty of full synchroniza-
tion in highly clustered networks.

To the extent that the modes behave as independent de-
grees of freedom, one can view each mode as having its own
individual transition point, a critical coupling strength above
which that mode is locked. To obtain numerical estimates of
these individual transitions, we considered a mode to be
locked when the value of �����2	 falls below a threshold of
0.01. �Since we are measuring an average over frequency
realizations, this means that for the majority of realizations
the value of �� is actually zero within the resolution of our
numerical measurement.� Frequencies were measured at a
sequence of values of � for one network of each of the types
we studied. As in Fig. 11 the frequencies �� were time av-
eraged over 300 time units, and their squares were averaged
over 100 realizations of the random intrinsic frequencies.
The transition points �c were estimated by means of a cubic
spline interpolation of the numerical measurements. The re-
sults are plotted in Figs. 12 and 13. The patterns are some-
what different for each type of network, but as a general rule
�c is a decreasing function of the eigenvalue �. In some of
the networks, a finite subset of the modes all lock at the same
� value while the remainder lock and unlock independently.
Evidently, some modes are strongly mutually coupled while
others are more independent. For the strongly clustered SFN,
for example, it is evident from Fig. 12 that a number of high
modes lock simultaneously at a quite low value of �=0.5.
This group of modes apparently represents the degrees of
freedom responsible for the advanced partial synchronization
of this network and the upward turn in the global order pa-
rameter seen in Fig. 10. For the normalized networks, all
modes within the main spectral peak lock almost simulta-
neously, and only the lower set of modes �in highly clustered
networks� have significant spread in their values of �c. The
low-eigenvalue modes that form at high clustering are diffi-
cult to lock, and it is evidently these modes that are respon-
sible for the inhibition of complete synchronization in the
cases of highly clustered neworks. Since these modes are
associated with the divisions among communities, this sug-
gests that the frequency clusters noted at moderately high �
in �31� are identical to topological communities. The degrees
of freedom that inhibit full synchronization are clearly dif-
ferent from the ones responsible for the advanced partial syn-
chronization of SFNs.

VI. CONCLUSIONS

We have examined the Laplacian spectra for several types
of complex networks, seeing the effects on the spectra of
degree distribution, clustering, and of coupling scheme �in
particular, equal and bidirectional couplings versus input nor-
malization�. We found that increasing clustering has two
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curves are for modes within the low-lying second peak of “commu-
nity” modes. The different velocity components drop to zero at
different rates, and ones corresponding to high eigenvalues lock �or
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main groups of effects on the eigenvalue spectrum. The first
set of effects alter the shape and composition of the main
spectral peak. More localized modes are formed in and
around this peak, and the correlation between eigenvalue and
degree expectation value generally becomes stronger. Sec-
ond, increased clustering creates an additional group of de-
localized low-eigenvalue modes which are associated with
an increased modularity �community structure� of the net-
work. As expected, input normalization greatly reduces the
influence of degree heterogeneity compared to the unnormal-
ized network, and this is reflected in a greater uniformity of
the spectra. Normalization, however, does not significantly
alter the effect of clustering on communities and the low
modes associated with them.

The behavior of the tail of the eigenvalue distribution is
determined mainly by the distribution of node intensities. For
example, power-law degree distributions lead to power-law
decays of eigenvalue distributions. Normalized networks, in
which all intensities are unity, have eigenvalue distributions
lacking tails. The upper tail of the eigenvalue distribution is
affected very little by clustering, but other properties of the
corresponding eigenvectors �such as their degree of localiza-
tion� do change significantly with clustering.

In general, study of the Laplacian spectra and the proper-
ties of the eigenvectors reveals complex structures whose
significance should be explored further in future work. Many
qualitative features are independent of the average degree �k	
but depend only on the type of topology and coupling
scheme. Some peculiar details of the spectral shapes we have
observed remain to be fully explained �see, for example,
Figs. 6 and 9�.

We found that when coordinates based on the Laplacian
eigenbasis are used to examine the dynamics of a network of
coupled phase oscillators, the transition to synchronization
can be visualized in ways that are not apparent from global
order parameters alone. Roughly speaking, extremal eigen-
values give information about the onset of synchronization
or desynchronization, whereas the full spectrum is relevant
to the full process of synchronization. In particular, in many
cases, modes or groups of modes make quasi-independent
transitions to synchronization as the coupling strength is in-
creased, with low modes synchronizing at higher coupling
strengths. The process of synchronization can be viewed as a
contraction of the dynamics onto progressively lower-
dimensional submanifolds of the phase space as different
eigenmodes lock one by one. The presence of low-lying
modes, which are hard to lock, can significantly retard the
achievement of full synchronization. The quasi-
independence of eigenvectors is a somewhat surprising result
in a highly nonlinear regime of partial synchronization. Pre-
viously the Laplacian was applied only to the linear stability
of a perfectly synchronized state.

Unlike the situation with the linear �MSF� problem, in the
regime of partial synchronization knowledge of the eigen-
value spectrum alone is not sufficient to predict the full dy-
namics. The dependence of transition point on eigenvalue is
different for each type of network even though the broad
trend �the transition point is a decreasing function of eigen-
value� is the same for all; but the spectrum is nonetheless a
source of at least heuristic insight into the dynamics, and
particular groups of eigenvectors can be directly associated
with aspects of the dynamics: for example, high modes with
the advanced transition in high-clustering SFNs, or low

10
0

1

1.5

2

2.5

λ

β c

10
−1

10
0

1

1.5

2

2.5

3

3.5

4

λ

β c

10
0

10
1

0.6

0.8

1

1.2

1.4

1.6

1.8

2

λ

β c
10

−2
10

−1
10

0
10

1
0

2

4

6

8

10

λ
β c

Poisson Scale−Free

H
ig

h
<−

−−
−

C
lu

st
er

in
g

−−
−−

>
L

o
w

FIG. 12. Transition points �c for individual eigenvectors of unnormalized networks. �c is the coupling strength at which each mode locks
as defined by the criterion �����2	�0.01. Eigenvalues are plotted on a logarithmic scale in order to reveal the trend at low eigenvalues.

PATRICK N. MCGRAW AND MICHAEL MENZINGER PHYSICAL REVIEW E 77, 031102 �2008�

031102-12



modes with frequency clustering and the inhibition of full
synchronization.

In the future, diagnostic techniques based on the Laplac-
ian spectrum can be applied to other types of networks. It
may be worthwhile to examine spectral effects of assortative
mixing, and to test our conjecture that assortative mixing
should bring the Laplacian and adjacency matrix spectra into
closer congruence. It may also be interesting to attempt a
finite size scaling analyis of the separate transitions under-

gone by different normal modes. Just as one gains important
information by considering the full process of synchroniza-
tion and not only the onset �39�, one also gains information
by examining the full spectrum of eigenvectors.
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FIG. 13. Mode transition points �c for normalized networks.
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